Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 7: 100228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317829

RESUMO

The study aims to improve the ocular delivery of Nebivolol HCL (NBV) belonging to the Biopharmaceutics classification system (BCSII) by using spanlastic nanovesicles (SNVs) for ophthalmic delivery and incorporating them into hydroxypropyl methylcellulose gel with ketorolac tromethamine (KET) as an anti-inflammatory to improve glaucoma complications like Conjunctivitis. SNVs were prepared by ethanol injection technique using span (60) as a surfactant and labrasol as an edge activator (EA). The impact of formulation factors on SNVs properties was investigated using a Box-Behnken design. In vitro evaluations showed that the formulations (F1, F4, and F14), containing Span 60 and labrasol as EA (25%, 50%, and 25%), exhibited high EE% with low PS and high ZP and DI. Additionally, 61.72 ± 0.77%, 58.97 ± 1.44%, and 56.20 ± 2.32% of the NBV amount were released from F1, F4, and F14 after 5 h, compared to 93.94 ± 1.21% released from drug suspension. The selected formula (G1), containing F1 in combination with KET and 2% w/w HPMC, exhibited 76.36 ± 0.90% drug release after 12 h. Ex vivo Confocal laser scanning revealed a high penetration of NBV-SNVs gel that ascertained the results of the in-vitro study. In vivo studies showed a significant decrease in glaucoma compared to drug suspension, and histopathological studies showed improvement in glaucomatous eye retinal atrophy. G1 is considered a promising approach to improving ocular permeability, absorption, and anti-inflammatory activity, providing a safer alternative to current regimens.

2.
Saudi Pharm J ; 32(1): 101912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178851

RESUMO

Objective: This study aimed to extract and separate the organic coloring agent known as Curcumin from the rhizomes of Curcuma longa, and then to create Spanlastics that were loaded with curcumin using the ethanol injection technique. The optimized Spanlastic dispersions were then incorporated into a gel preparation for topical anti-aging use. The Spanlastic dispersions were analyzed for particle size, zeta potential, drug loading efficiency, and in vitro release profile. Furthermore, the rheological properties of the gel preparation were assessed, and a skin penetration study was conducted using confocal microscopy. Methods: Twelve different Curcumin-loaded Spanlastic dispersions using the ethanol injection method with Span® 60 as a surfactant and Tween® 80 as an edge activator in varying ratios. The dispersions were then subjected to various tests, such as particle size analysis, zeta potential measurement, drug entrapment efficiency assessment, and in vitro release profiling. The optimized formula was selected using Design-Expert® software version 13, then used to create a gel preparation, which utilized 2% HPMC E50 as a gelling polymer. The gel was evaluated for its rheological properties and analyzed using confocal microscopy. Additionally, Raman analysis was performed to ensure that the polymers used in the gel were compatible with the drug substance. Results: F5 formula, (that contains 10 mg Curcumin, and mixture 5 of span-tween mixtures that consist of 120 mg Span® 60 with 80 mg Tween® 80) was selected as the optimized formula with a desirability produced by Design Expert® software equal to 0.761, based on its particle size (212.8 ± 4.76), zeta potential (-29.4 ± 2.11), drug loading efficiency (99.788 ± 1.34), and in vitro release profile evaluations at Q 6hr equal to almost 100 %. Statistical significance (P < 0.05) was obtained using one-way ANOVA. Then F5 was used to formulate HPMC E50 gel-based preparations. The gel formula that was created and analyzed using Raman spectroscopy demonstrated no signs of incompatibility between the Curcumin and the polymers that were utilized.The confocal spectroscopy found that the anti-aging gel preparation showed promising results in terms of skin penetration. Also, images revealed that the gel could penetrate the layers of the skin (reached a depth of about 112.5 µm), where it could potentially target and reduce the appearance of fine lines and wrinkles. The gel also appeared to be well-tolerated by the skin, with no signs of irritation or inflammation observed in the images. Conclusion: The obtained results successfully confirmed the potential of the promising (F5) formula to produce sustained release action and its ability to be incorporated into 2% HPMC E50 anti-aging gel. The confocal microscopy study suggested that the anti-aging gel had the potential to be an effective and safe topical treatment for aging skin.

3.
Sci Rep ; 14(1): 1359, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228631

RESUMO

In our pursuit of enhancing acne treatment while minimizing side effects, we developed tailored Adapalene microsponges (MS) optimized using a Box-Behnken design 33. The independent variables, Eudragit RS100 percentage in the polymer mixture, organic phase volume, and drug to polymer percentage, were explored. The optimized formulation exhibited remarkable characteristics, with a 98.3% ± 1.6 production yield, 97.3% ± 1.64 entrapment efficiency, and a particle size of 31.8 ± 1.1 µm. Notably, it achieved a 24 h cumulative drug release of 75.1% ± 1.4. To delve deeper into its efficacy, we evaluated the optimized microspongeal-gel in vitro, in vivo, and clinically. It demonstrated impressive retention in the pilosebaceous unit, a target for acne treatment. Comparative studies between our optimized Adapalene microspongeal gel and marketed Adapalene revealed superior performance. In vivo studies on Propionibacterium acnes-infected mice ears showed a remarkable 97% reduction in ear thickness, accompanied by a significant decrease in inflammatory signs and NF-κB levels, as confirmed by histopathological and histochemical examination. Moreover, in preliminary clinical evaluation, it demonstrated outstanding effectiveness in reducing comedonal lesions while causing fewer irritations. This not only indicates its potential for clinical application but also underscores its ability to enhance patient satisfaction, paving the way for future commercialization.


Assuntos
Acne Vulgar , Fármacos Dermatológicos , Humanos , Camundongos , Animais , Adapaleno , Acne Vulgar/tratamento farmacológico , Acne Vulgar/patologia , Pele/patologia , Polímeros/uso terapêutico , Fármacos Dermatológicos/uso terapêutico , Resultado do Tratamento , Géis/uso terapêutico
4.
Pharm Dev Technol ; 29(1): 40-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38078863

RESUMO

Nebivolol (NBV), a BCS class II anti-hypertensive drug, suffers from limited solubility and oral bioavailability. Nanosized ethosomes were adopted as an approach to solubilize and deliver NBV transdermally, as a substitute to oral route. Ethosomal dispersions were prepared employing thin film hydration method. Formulation variables were adjusted to obtain entrapment efficiency; EE > 50%, particle size; PS < 100 nm, zeta potential; ZP > ±25 mV, and polydispersity index; PDI < 0.5. The optimized ethosomal dispersion (OED) showed accepted EE 86.46 ± 0.15%, PS 73.50 ± 0.08 nm, ZP 33.75 ± 1.20 mV, and PDI 0.31 ± 0.07. It also showed enhanced cumulative amount of NBV permeated at 8 h (Q8) 71.26 ± 1.46% and 24 h (Q24) 98.18 ± 1.02%. TEM images denoted spherical vesicles with light colored lipid bi-layer and dark core. Confocal laser scanning microscopy showed deeply localized intradermal and transfollicular permeation of the fluorolabelled OED (FL-OED). Nanosized FL-OED (<100 nm) can permeate through hair follicles creating a drug reservoir for enhanced systemic absorption. OED formulated into transdermal patch (OED-TP1) exhibited accepted physicochemical properties including; thickness 0.14 ± 0.01 mm, folding endurance 151 ± 0.07, surface pH 5.80 ± 0.15, drug content 98.64 ± 2.01%, mucoadhesion 8534 ± 0.03, Q8 87.61 ± 0.11%, and Q24 99.22 ± 0.24%. In vivo pharmacokinetic studies showed significantly enhanced bioavailability of OED-TP1 by 7.9 folds compared to oral Nevilob® tablets (p = 0.0002). It could be concluded that OED-TP1 can be a promising lipid nanocarrier TDDS for NBV and an efficacious alternative route of administration for hypertensive patients suffering from dysphagia.


Ethosomes loaded with lipophilic drugs, as NBV, can have two possible pathways of permeation through the skin; intradermal and transfollicular.Nanosized ethosomes (< 100 nm) can produce efficient intradermal and transfollicular reservoirs for sustained drug delivery.The formulated transdermal patch loaded with the optimized ethosomal dispersion (OED) showed enhanced bioavailability by 7.9 folds compared to Nevilob® oral tablets.


Assuntos
Lipídeos , Pele , Humanos , Nebivolol , Administração Cutânea , Microscopia Confocal , Tamanho da Partícula , Lipossomos/química
5.
AAPS PharmSciTech ; 24(8): 246, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030812

RESUMO

Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.


Assuntos
Nanofibras , Cicatrização , Pele , Polímeros , Bandagens
6.
Pharm Dev Technol ; 28(10): 928-938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870222

RESUMO

This study aims to improve the RXB bioavailability using hybrid nanoparticles. A modified melt dispersion technique created different formulas with varying GMO-SAIB: RXB and GMO: SAIB ratios, with fixed GMO-SAIB: poloxamer 407 ratios. The PS, PDI, ZP, and EE were measured to determine the optimal formula, which was selected using Design-Expert™ software. The optimized formula was lyophilized and tested for PS, PDI, ZP, and EE. The chosen lyophilized formula (L4) was characterized using FTIR, DSC, PXRD, dissolution studies, and pharmacokinetics studies. The study found correlations between variables and identified how GMO-SAIB concentration affects drug encapsulation. The dissolution parameters were calculated, including % Q5 and % DE). The % Q5 values were 68.4 ± 1.7% and 89.7 ± 3.6% for Xarelto and L4 tablets, respectively. The % DE values were 89.7 ± 0.4% and 97.5 ± 2.1% for Xarelto and L4 tablets, respectively. The AUC values were 2117.0 ng.h/mL (±77.3) and 3919.4 ng.h/mL (±134.8) for Xarelto and L4 tablets, respectively. The Cmax values were 241.3 ng/mL (±21.0) and 521.5 ng/mL (±91.5) for Xarelto and L4 tablets, respectively. In conclusion, the study found that using GMO-SAIB as co-formers effectively enhanced the bioavailability of RXB. The authors recommend using the hybrid nanoparticles technique and suggest further research to enhance its effectiveness for drug delivery.


Assuntos
Nanopartículas , Rivaroxabana , Plantas Geneticamente Modificadas , Disponibilidade Biológica , Sacarose
7.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37259468

RESUMO

The study aims to investigate the ability of lyophilized nasal inserts of nanosized atomoxetine HCl solid lipid nanoparticles (ATM-SLNs) to transport atomoxetine (ATM) directly to the brain and overcome the first-pass metabolism. In this case, 16 formulae of (ATM-SLNs) were prepared using hot melt emulsification, stirring and ultrasonication method technique. A full factorial design was established with 24 trials by optimization of four variables; lipid type (Compritol 888 ATO or stearic acid) (X1), lipid to drug ratio [(1:2) or (2:1)] (X2), span 60: Pluronic f127 ratio [(1:3) or (3:1)] (X3) and probe sonication time (five or ten minutes) (X4). The prepared SLNs were characterized for entrapment efficiency (EE%), in-vitro drug release after 30 min (Q30min), particle size (PS), zeta potential (ZP) and polydispersity index (PDI). Design Expert® software was used to select the optimum two formulae. The morphological examination for the optimum two formulae was carried out using a transmission electron microscope (TEM). Furthermore, eight lyophilized nasal inserts were prepared by using a 23 full factorial design by optimization of three variables: type of (ATM-SLNs) formula (X1), type of polymer (NOVEON AA1 or HPMC K100m) (X2) and concentration of polymer (X3). They were evaluated for nasal inserts' physicochemical properties. The two optimum inserts were selected by Design Expert® software. The two optimum insets with the highest desirability values were (S4 and S8). They were subjected to DSC thermal stability study and in-vivo study on rats. They were compared with atomoxetine oral solution, atomoxetine (3 mg/kg, intraperitoneal injection) and the pure atomoxetine solution loaded in lyophilized insert. (ATM-SLNs) showed EE% range of (41.14 mg ± 1.8% to 90.6 mg ± 2.8%), (Q30min%) of (27.11 ± 5.9% to 91.08 ± 0.15%), ZP of (-8.52 ± 0.75 to -28.4 ± 0.212% mV), PS of (320.9 ± 110.81% nm to 936.7 ± 229.6% nm) and PDI of (0.222 ± 0.132% to 0.658 ± 0.03%). Additionally, the two optimum (ATM-SLNs) formulae chosen, i.e., F7 and F9 showed spherical morphology. Nasal inserts had assay of drug content of (82.5 ± 2.5% to 103.94 ± 3.94%), Q15min% of (89.9 ± 6.4% to 100%) and Muco-adhesion strength of (3510.5 ± 140.21 to 9319.5 ± 39.425). DSC results of S4 and S8 showed compatibility of (ATM) with the other excipients. S8 and S4 also showed higher trans-nasal permeation to the brain with brain targeting efficiency of (211.3% and 177.42%, respectively) and drug transport percentages of (52.7% and 43.64%, respectively). To conclude, lyophilized nasal inserts of (ATM-SLNs) enhanced (ATM) trans-nasal drug targeting permeation and brain targeting efficiency.

8.
ACS Omega ; 8(23): 20251-20261, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332788

RESUMO

Green coffee bean extract (GCBE) provides diversified health benefits. However, its reported low bioavailability impeded its utilization in various applications. In this study, GCBE-loaded solid lipid nanoparticles (SLNs) were prepared to improve the bioavailability through enhanced intestinal absorption of GCBE. During the preparation of promising GCBE-loaded SLNs, the lipid concentration, surfactant concentration, and co-surfactant amount are crucial that were optimized using the Box-Behnken design, while particle size, polydispersity index (PDI), ζ-potential, entrapment efficiency, and cumulative drug release were the measured responses. GCBE-SLNs were successfully developed by a high shear homogenization technique using geleol as a solid lipid, tween 80 as a surfactant, and propylene glycol as Co-SAA. The optimized SLNs contained 5.8% geleol, 5.9% tween 80, and 80.4 mg PG resulting in a small particle size of 235.7 ± 12.5 nm, reasonably acceptable PDI of 0.417 ± 0.023, and ζ-potential of -15 ± 0.14 mV, with a high entrapment efficiency of 58.3 ± 0.85% and cumulative release of 7575 ± 0.78%. Furthermore, the performance of the optimized GCBE-SLN was evaluated using an ex vivo everted sac model where the intestinal permeation of GCBE was improved due to nanoencapsulation using SLN. Consequently, the results enlightened the auspicious potential of exploiting oral GCBE-SLNs for boosting intestinal absorption of chlorogenic acid.

9.
Drug Deliv ; 30(1): 2189112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36916128

RESUMO

A PEGylated Tween 80-functionalized chitosan-lipidic (PEG-T-Chito-Lip) nano-vesicular hybrid was developed for intranasal administration as an alternative delivery route to help improve the poor oral bioavailability of BCS class-III model/antiemetic (metoclopramide hydrochloride; MTC). The influence of varying levels of chitosan, cholesterol, PEG 600, and Tween 80 on the stability/release parameters of the formulated nanovesicles was optimized using Draper-Lin Design. Two optimized formulations (Opti-Max and Opti-Min) with both maximized and minimized MTC-release goals, were predicted, characterized, and proved their vesicular outline via light/electron microscopy, along with the mutual prompt/extended in-vitro release patterns. The dual-optimized MTC-loaded PEG-T-Chito-Lip nanovesicles were loaded in intranasal in-situ gel (ISG) and further underwent in-vivo pharmacokinetics/nose-to-brain delivery valuation on Sprague-Dawley rats. The absorption profiles in plasma (plasma-AUC0-∞) of the intranasal dual-optimized MTC-loaded nano-vesicular ISG formulation in pretreated rats were 2.95-fold and 1.64-fold more than rats pretreated with orally administered MTC and intranasally administered raw MTC-loaded ISG formulation, respectively. Interestingly, the brain-AUC0-∞ of the intranasal dual-optimized MTC-loaded ISG was 10 and 3 times more than brain-AUC0-∞ of the MTC-oral tablet and the intranasal raw MTC-loaded ISG, respectively. It was also revealed that the intranasal dual-optimized ISG significantly had the lowest liver-AUC0-∞ (862.19 ng.g-1.h-1) versus the MTC-oral tablet (5732.17 ng.g-1.h-1) and the intranasal raw MTC-loaded ISG (1799.69 ng.g-1.h-1). The brain/blood ratio profile for the intranasal dual-optimized ISG was significantly enhanced over all other MTC formulations (P < 0.05). Moreover, the 198.55% drug targeting efficiency, 75.26% nose-to-brain direct transport percentage, and 4.06 drug targeting index of the dual-optimized formulation were significantly higher than those of the raw MTC-loaded ISG formulation. The performance of the dual-optimized PEG-T-Chito-Lip nano-vesicular hybrids for intranasal administration evidenced MTC-improved bioavailability, circumvented hepatic metabolism, and enhanced brain targetability, with increased potentiality in heightening the convenience and compliance for patients.


Assuntos
Quitosana , Metoclopramida , Ratos , Animais , Metoclopramida/metabolismo , Polissorbatos , Quitosana/metabolismo , Disponibilidade Biológica , Ratos Sprague-Dawley , Sistemas de Liberação de Medicamentos , Administração Intranasal , Encéfalo/metabolismo , Lipídeos , Portadores de Fármacos/metabolismo
10.
Int J Pharm ; 636: 122816, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907278

RESUMO

The repurposed oral use of spironolactone (SP) as an anti-rosacea drug faces many challenges that hinder its efficacy and compliance. In this study, a topically applied nanofibers (NFs) scaffold was evaluated as a promising nanocarrier that enhances SP activity and avoids the friction routine that exaggerates rosacea patients' inflamed, sensitive skin. SP-loaded poly-vinylpyrrolidone (40% PVP) nanofibers (SP-PVP NFs) were electrospun. Scanning electron microscopy showed that SP-PVP NFs have a smooth homogenous surface with a diameter of about 426.60 nm. Wettability, solid state, and mechanical properties of NFs were evaluated. Encapsulation efficiency and drug loading were 96.34% ± 1.20 and 11.89% ± 0.15, respectively. The in vitro release study showed a higher amount of SP released over pure SP with a controlled release pattern. Ex vivo results showed that the permeated amount of SP from SP-PVP NFs sheets was 4.1 times greater than that of pure SP gel. A higher percentage of SP was retained in different skin layers. Moreover, the in vivo anti-rosacea efficacy of SP-PVP NFs using croton oil challenge showed a significant reduction in erythema score compared to the pure SP. The stability and safety of NFs mats were proved, indicating that SP-PVP NFs are promising carriers of SP.


Assuntos
Nanofibras , Humanos , Espironolactona
11.
Drug Deliv ; 30(1): 2181747, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36803255

RESUMO

Repaglinide (RPG), a monotherapy insulin secretagogue used to treat diabetes mellitus-type II yet, it suffers from poor water solubility and variable bioavailability (∼ 50%) due to hepatic first pass metabolism. In this study, 2FI I-Optimal statistical design was employed to encapsulate RPG into niosomal formulations using cholesterol,span 60 and peceolTM. The optimized niosomal formulation (ONF) showed particle size 306.60 ± 84.00 nm, zeta potential -38.60 ± 1.20 mV, polydispersity index 0.48 ± 0.05 and entrapment efficiency 92.00 ± 2.60%. ONF showed > 65% RPG release that lasted for 3.5 h, and significantly higher sustained release compared to Novonorm® tablets after 6 h (p < 0.0001). TEM for ONF showed spherical vesicles with dark core and light-colored lipid bilayer membrane. RPG peaks disappeared in FTIR confirming successful RPG entrapment. To eliminate dysphagia associating conventional oral tablets, chewable tablets loaded with ONF were prepared using coprocessed excipients; Pharmaburst® 500, F-melt® and Prosolv® ODT. Tablets showed friability <1%, hardness 3.9 ± 0.423-4.7 ± 0.410 Kg, thickness 4.1 ± 0.045-4.4 ± 0.017 mm and acceptable weight.All tablets showed robust RPG release at 30 min compared to Novonorm® tablets. At 6h, chewable tablets containing only Pharmaburst® 500 and F-melt® showed sustained and significantly increased RPG release compared to Novonorm® tablets (p < 0.05). Pharmaburst® 500 and F-melt® tablets showed rapid in vivo hypoglycemic effect with 5 and 3.5 fold significant reduction in blood glucose compared to Novonorm® tablets (p < 0.05) at 30 min. Also, at 6h the same tablets showed 1.5 and 1.3 fold significant extended reduction in blood glucose compared to the same market product (p < 0.05). It could be concluded that chewable tablets loaded with RPG ONF represent promising novel oral drug delivery systems for diabetic patients suffering from dysphagia.


Assuntos
Transtornos de Deglutição , Hipoglicemiantes , Animais , Ratos , Hipoglicemiantes/farmacologia , Excipientes , Glicemia , Solubilidade , Comprimidos
12.
Int J Pharm ; 633: 122621, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693486

RESUMO

The intention of this work is to assess the repurposed antimicrobial impact of Levocetirizine dihydrochloride (LVC), which is a well-known antihistaminic drug, in addition, to augment the antimicrobial effect by using terpene-enriched vesicles (TPs). To investigate how various parameters affect TPs aspects, TPs were made employing the ethanol-injection-method and optimized d-optimal design. The TPs were characterized based on their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum TP was submitted to more examinations. The optimum TP (TP12) showed a spherical vesicle having an EE% of 66.39 ± 0.12%, PS of 243.3 ± 4.60 nm, PDI of 0.458 ± 0.003, and ZP of 24.2 ± 0.55 mV. The in-vitro release study results demonstrated that LVC is sustainedly liberated from the optimum TP compared to LVC-solution. The ex-vivo assessment showed that LVC was released in a more sustained manner from TPs-gel related to LVC solution, optimum TP, and LVC gel. Ex-vivo visualization by confocal laser scanning microscopy showed good deposition of the fluorescein-labeled TP. Further, the in-vitro anti-bacterial effect and biofilm inhibition and detachment assessment confirmed the potency of LVC against Methicillin-resistant-Staphylococcus-aureus (MRSA). The in-silico study demonstrated that the LVC has excellent stability with other ingredients combined with it in the TPs, further, it proved that LVC is a potential candidate for treating MRSA. In-vivo assessments revealed a good antimicrobial effect toward MRSA infection. Moreover, the histopathological evaluation confirmed the safety of using TPs-gel topically. In conclusion, MRSA-related skin infections may be treated using the LVC loaded TPs-gel as a promising system.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Projetos de Pesquisa , Antibacterianos/farmacologia
13.
Pharmaceutics ; 14(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36365223

RESUMO

The current study aims to develop niosomal nanocarriers for intranasal delivery of dronedarone hydrochloride to ameliorate its limited bioavailability. Niosomes were prepared by ethanol injection method and optimized using 3² full factorial experimental design. Both Span® type (X1) and Span®: cholesterol ratio (X2) were set as independent variables. Vesicle size (Y1), polydispersity index (Y2), zeta potential (Y3), and entrapment efficiency (Y4) were set as responses. The optimal formula was further incorporated into an ion-sensitive in situ gelling polymer for intranasal delivery. Optimal formula (N7), which is composed of Span® 80: cholesterol (1:1), was of the least vesicle size (121.27 ± 13.31 nm), least polydispersity index (0.43 ± 0.073), highest zeta potential (-22.23 ± 2.84 mV) and highest entrapment efficiency (73.44 ± 2.8%). About 75.86% and 60.29% of dronedarone hydrochloride were released from N7 dispersion and in situ gel, respectively, within 12 h, compared to only 13.3% released from a drug-free suspension. In vivo pharmacokinetic study on male New Zealand rabbits resulted in significantly higher Cmax, AUC0-72, and AUC0-∞ of intranasal niosomal in situ gel compared to oral suspension. Almost twofold amplification of relative bioavailability was obtained after intranasal administration of niosomal in situ gel (195.7%) compared to oral suspension.

14.
Drug Des Devel Ther ; 16: 3847-3864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388080

RESUMO

Purpose: The objective of the present study was to scrutinize the microsponges (MS) as a carrier system using Adapalene (ADA) as a model drug. Methods: Data modelling was implemented using Plackett-Burman design to identify the main variables affecting the formulation of ADA-MS. The adopted method of preparation for MS was quasi-emulsion solvent diffusion method. The nominated independent variables were volume of organic phase, sonication time, stirring speed, drug percent, polymer type, emulsifier concentration, and method of organic phase addition. As for the dependent variables, they included entrapment efficiency (E.E.%), production yield (P.Y.%), particle size (P.S.) and morphology. Furthermore, selected ADA loaded microsponges (ADA-MS) were in vitro assayed for their biological activities via cytotoxicity, UVA irradiation and cell viability, and antimicrobial activity. Results: The study indicated that the drug percent, polymer type and surfactant concentration have the key significant effect on E.E.% and P.Y.%, while, the drug percent, stirring speed and volume of organic phase have had a significant effect on P.S. and their morphology. Furthermore, ADA-MS had a momentous cytotoxic effect on A431 and M10 cell-lines with exceptional enrichment when the polymer Eudragit RS100 was used. Also, the ADA-MS increased the cell viability after UVA irradiation on HFB-4 cell-line by 14% to 43%, especially when using Ethyl Cellulose as a polymer. Lastly, the antimicrobial activity of ADA against Propionibacterium acnes was boosted when incorporated into MS. Conclusion: The Plackett-Burman design proved its impact in discerning preparation variables affecting the quality of ADA-MS formulation, with heightening of the in vitro biological activities of ADA. Thus, MS was presumed to be an auspicious carrier system for ADA.


Assuntos
Anti-Infecciosos , Sistemas de Liberação de Medicamentos , Adapaleno/farmacologia , Emulsões , Excipientes , Polímeros
15.
Drug Deliv ; 29(1): 2549-2560, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35912869

RESUMO

It was found that propranolol hydrochloride (PNL), which is a beta-blocker used for hypertension treatment, has a potent spermicidal activity through local anesthetic activity or beta-blocking effect on sperm cells subsequently it could be used as a contraceptive remedy. This study aimed to entrap PNL into invasomes (INVs) and then formulate it as a locally acting contraceptive gel. PNL-loaded mucoadhesive INVs were prepared via the thin-film hydration technique. The D-optimal design was utilized to fabricate INVs employing lipid concentration (X1), terpenes concentration (X2), terpenes type (X3), and chitosan concentration (X4) as independent variables, while their impact was observed for entrapment efficiency percent (Y1; EE%), particle size (Y2; PS), zeta potential (Y3; ZP), and amount of drug released after 6 h (Y4; Q6h). Design Expert® was bestowed to nominate the desired formula. The selected INV was subjected to further studies and formulated into a mucoadhesive gel for ex-vivo and in-vivo investigations. The optimum INV showed a spherical shape with EE% of 65.01 ± 1.24%, PS of 243.75 ± 8.13 nm, PDI of 0.203 ± 0.01, ZP of 49.80 ± 0.42 mV, and Q6h of 53.16 ± 0.73%. Differential scanning calorimetry study asserted the capability of INVs to entrap PNL. Permeation studies confirmed the desired sustained effect of PNL-loaded INVs-gel compared to PNL-gel, INVs, and PNL solution. Sperm motility assay proved the potency of INVs-gel to inhibit sperm motility. Besides, the histopathological investigation verified the tolerability of the prepared INVs-gel. Taken together, the gained data justified the efficacy of PNL-loaded INVs-gel as a potential locally acting contraceptive.


Assuntos
Lipossomos , Propranolol , Administração Cutânea , Anticoncepcionais , Humanos , Masculino , Tamanho da Partícula , Propranolol/farmacologia , Sêmen , Motilidade dos Espermatozoides , Terpenos
16.
AAPS PharmSciTech ; 23(6): 182, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773361

RESUMO

The goal of this study was to develop a bilosomal gel formulation to enhance transdermal permeability of dronedarone hyrdrochloride (DRN) which suffers from poor oral absorption and limited bioavailability. To overcome this obstacle, bilosomes were successfully prepared using 23 full-factorial design. Span®40, cholesterol, sodium deoxycholate (bile salt), clove oil (permeability enhancer), and either Tween® 60 or Tween® 80 (edge activator) were used in bilosome preparation by ethanol injection method. In this design, independent variables were X1, edge activator type; X2, edge activator amount (mg); and X3, permeability enhancer concentration (% w/v). Optimal formula (B2) of the highest desirability of (0.776) demonstrated minimum vesicle size (VS) of 312.4 ± 24.42 nm, maximum absolute value of zeta potential (ZP) - 36.17 ± 2.57 mV, maximum entrapment efficiency (EE %) of 80.95 ± 3.01%, maximum deformability Index (DI) of 8.24 ± 1.26 g and maximum drug flux after 12 h (J12) of 21.23 ± 1.54 µg/cm2 h upon ex vivo permeation study. After 12 h, 70.29 ± 6.46% of DRN was released from B2. TEM identification of B2 showed spherical shaped nanosized vesicles which were physically stable for 3 months at different temperatures. B2 was incorporated into carboxymethylcellulose gel base for easiness of dermal application. B2 gel demonstrated good physical properties, non-Newtonian psuedoplastic flow, and enhanced release (57.0 ± 8.68% of DRN compared to only 13.3 ± 1.2% released from drug suspension after 12 h) and enhanced skin permeation.


Assuntos
Óleo de Cravo , Absorção Cutânea , Administração Cutânea , Óleo de Cravo/metabolismo , Dronedarona , Sistemas de Liberação de Medicamentos/métodos , Nanogéis , Tamanho da Partícula , Polissorbatos/metabolismo , Pele/metabolismo
17.
Nanomedicine ; 39: 102466, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587542

RESUMO

The purpose of this work was to incorporate an optimized pomegranate extract loaded solid lipid nanoparticles (PE-SLNs) formula in a transdermal emulgel to evaluate its anticancer effect. The prepared emulgel formulae were evaluated for their physicochemical properties. An ex vivo permeation study was done through mouse skin and the kinetic parameters were determined. Kinetic data showed that the ex vivo permeation of PE from SLNs transdermal emulgel through mouse skin followed non-Fickian diffusion transport. Further, in vivo study was done by applying the optimized PE-SLNs transdermal emulgel on mice skin bearing a solid form of Ehrlich ascites carcinoma (EAC) as well as free PE, control, placebo, and standard groups for comparison. In addition, histopathological examinations of the samples obtained from the EAC mice model were performed. The results proved that application of the selected PE-SLNs emulgel formulation on the mice skin bearing solid tumor revealed statistically significant anticancer effects.


Assuntos
Carcinoma , Nanopartículas , Punica granatum , Animais , Ascite , Portadores de Fármacos/química , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Extratos Vegetais/uso terapêutico
18.
J Pharm Policy Pract ; 14(1): 106, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915937

RESUMO

BACKGROUND: There are limited studies on the role of efficient regulatory mechanisms in facilitating greater access to Hepatitis C virus (HCV) treatment. Evidence to support the importance of effective pharmaceutical policies and regulations in improving access to oral viral drugs towards the elimination of HCV is needed. This study aims to explore the adequacy of the implemented pharmaceutical policies and regulations in Egypt and their role to improve the availability and affordability of direct-acting antivirals (DAAs) to achieve universal access to the treatment of HCV. METHODS: The study adopts a qualitative methodology using desk review of regulatory and legislative information, literature review, and semi-structured interviews with key experts from the concerned governmental regulatory agencies, pharmaceutical industries, academic organizations, professional associations, civil society organizations, and clinicians who are working in researching treatments for hepatitis C. FINDINGS: The common DAAs available in the market are Daclatasvir, Sofosbuvir, and Sofosbuvir-based direct-acting antiviral combinations. Fast-track medicines registration pathway for marketing authorization of DAAs is used to reduce market access time frames. The pricing policies are supplemented using price negotiation to set up affordable prices that led to a reasonable price for DAAs. Using Trade-Related Aspects of Intellectual Property Rights (TRIPs) flexibility and local production of quality generics DAAs at lower prices. In addition, political will and collaboration between the government, civil society, and pharmaceutical companies improved patients' access to affordable DAAs and succeeding hepatitis C treatment in Egypt. CONCLUSIONS: The study findings indicated that the implemented pharmaceutical policies and regulations have an immense role in enhancing access to medicines towards the elimination of hepatitis C in Egypt.

19.
Drug Des Devel Ther ; 15: 4229-4242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675486

RESUMO

SIGNIFICANCE: Statins are an important class of drugs that help to control hyperlipidemia, and one of these statins recently used is pitavastatin calcium (PITA). Nevertheless, the most reported adverse effect of statins is myopathy. Therefore, combining statins with non-steroidal anti-inflammatory drugs (NSAIDs) as Lornoxicam (LORNO) can help in the management of statin-induced myopathy. PURPOSE: This study aimed to formulate and evaluate different oral disintegrating tablets (ODTs) containing PITA using different co-processed excipients. The best PITA-ODT was selected and reformulated with the addition of LORNO, forming a single ODT comprising both drugs. The pharmacokinetic parameters of PITA and LORNO in a single ODT were compared to those of the marketed products (Lipidalon® and Lornoxicam®). METHODS: Eight PITA-ODTs were prepared via direct compression. The prepared PITA-ODTs were evaluated for their weight variation, thickness, breaking force, friability, drug content, and wetting time (WT). In-vitro disintegration time (DT) and dissolution were also evaluated and taken as parameters for selection of the best formula based on the criteria of scoring the fastest DT and highest Q10 min. LORNO was added to the selected PITA-ODT, forming a single ODT (M1) comprising both drugs, which was subjected to an in-vivo pharmacokinetic study using rats as an animal model and liquid chromatography-mass spectrometry (LC-MS/MS) for analysis of both drugs in rat plasma. RESULTS: Results showed that all PITA-ODTs had acceptable physical properties in accordance with pharmacospecial standards. PITA-ODT prepared with Pharmaburst® (F2) had significantly (p<0.05) the fastest DT (6.66±1.52 s) and highest Q10 min (79.07±2.02%) and was chosen as the best formula. The in-vivo pharmacokinetic study of M1 formula showed higher percent relative bioavailability (%RB) of 286.7% and 169.73% for PITA and LORNO, respectively, compared with the marketed products. CONCLUSION: The single ODT comprising PITA and LORNO was promising for instant co-delivery of both drugs with higher %RB when compared with the marketed products.


Assuntos
Sistemas de Liberação de Medicamentos , Piroxicam/análogos & derivados , Quinolinas/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Disponibilidade Biológica , Química Farmacêutica/métodos , Cromatografia Líquida , Combinação de Medicamentos , Liberação Controlada de Fármacos , Excipientes/química , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Masculino , Piroxicam/administração & dosagem , Piroxicam/química , Piroxicam/farmacocinética , Quinolinas/química , Quinolinas/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Comprimidos , Espectrometria de Massas em Tandem
20.
Pharmaceutics ; 13(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068544

RESUMO

Bisoprolol hemifumarate (BH) is an antihypertensive drug that is used as first-line treatment for chronic hypertension and angina pectoris. Our study was performed to enhance the transdermal delivery of BH, a hydrophilic drug active with high molecular weight, through differently prepared hydrogels. The synergistic effect of permeation enhancers and iontophoresis was investigated via both ex vivo and in vivo permeation studies. Ex vivo iontophoretic permeation studies were performed by using male albino Wistar rat skin. Cellosolve® hydrogel (F7) showed a 1.5-fold increase in Q180, Jss, and FER compared to F5 (lacking permeation enhancer). BH pharmacokinetic data were studied in human volunteers, following transdermal delivery of F7, using Phoresor® Unit II iontophoresis device, compared to conventional oral tablets. F7 showed 1.9- and 2-fold higher values of Cmax and AUC0-40, respectively compared to Concor® tablets, as well as a smaller Tmax (2.00 ± 2.00 h). The relative bioavailability of F7 was found to be 201.44%, relative to Concor® tablets, demonstrating the significantly enhanced transdermal permeation of BH from the selected hydrogel by iontophoresis, in human volunteers. Finally, results showed the successful utility of permeation enhancers combined with iontophoresis in significantly enhanced transdermal permeation of BH, despite its large molecular weight and hydrophilic nature. Therefore, this strategy could be employed as a successful alternative route of administration to conventional oral tablets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...